
VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-28

om
2om

1
ok

m
−1 ok

m ok
sos

1 os
2 ok

s
−1

/1
m

/2
m

/q
m
−1 /q

m
Model Input Variables

Correspondence

Correspondence

Inference

Model Output Variables System Output Variables

SIMULATION
MODEL

SYSTEM

emeemd

em1

emi

emg

emj

emh

ema emb emc

emi emj

emd

em1 emg emh

ema emb emc

System Input Variables

eme

/2
s

/1
s

/q
s
−1 /q

s

Figure 4-3. Model and System Characteristics

In Approach 1, the m.r.a. is determined by the 100()1− % s.c.i. for
m s− as

[]− (1)

where []′ = 1 2, ,..., k represents lower bounds and

[]′ = 1 2, ,..., k represents upper bounds of the s.c.i. The modeler can

be 100()1− % confident that the true differences between the population

means of the model and system output variables are simultaneously
contained within (1).

In Approach 2, the 100()1 m− % s.c.i. are first constructed for m as

[]m m, (2)

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-29

where () []m
1
m

2
m

k
m

′
= , ,..., and () []m

1
m

2
m

k
m

′
= , ,..., . Then, the

100()1 s− % s.c.i. are constructed for s as

[]s s, (3)

where () []s
1
s

2
s

k
s

′
= , ,..., and () []s

1
s

2
s

k
s

′
= , ,..., . Finally, using the

Bonferroni inequality, the m.r.a. is determined by the following s.c.i. for
m s− with a confidence level of at least ()1− −m s when the model

and system outputs are dependent and with a level of at least

()1− − +m s m s when the outputs are independent (Kleijnen, 1975):

[]m s m s− −, (4)

In Approach 3, the model and system output variables are observed in

pairs and the m.r.a. is determined by the 100()1− % s.c.i. for d , the

population means of the differences of paired observations, as

[]d d, (5)

where () []d
1
d

2
d

k
d

′
= , ,..., and () []d

1
d

2
d

k
d

′
= , ,..., .

The m.r.a. is constructed with the observations derived from the model and
system output variables by running the model with the same input data and
operational conditions that drive the real system. If the simulation is self-
driven, then the model input data come independently from the same
populations or stochastic process as the system input data. Because the
model and system input data are independent of each other, but come from
the same populations, the model and system output data are expected to be
independent and identically distributed. Hence, Approach 1 or 2 can be
used. The use of Approach 3 in this case would be less efficient. If the
simulation is trace-driven, the model input data are exactly the same as the
system input data. In this case, the model and system output data are

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-30

expected to be dependent and identical. Therefore, Approach 2 or 3 should
be used.

Sometimes, the model or simulation application sponsor or proponent may
specify an acceptable range of accuracy for a specific simulation. This
specification can be made for the mean behavior of a stochastic simulation
as

L Um s≤ − ≤ . (6)

where []L L ,L ,...,L1 2 k
′ = and []U U ,U ,...,U1 2 k

′ = are the lower and

upper bounds of the acceptable differences between the population means of
the model and system output variables. In this case, the m.r.a. should be
compared against Equation (6) to evaluate model validity.

The shorter the lengths of the m.r.a., the more meaningful is the
information they provide. The lengths can be decreased by increasing the
sample sizes or by decreasing the confidence level. Such increases in
sample sizes, however, may increase the cost of data collection. Thus, a
trade-off analysis may be necessary among the sample sizes, confidence
levels, half-length estimates of the m.r.a., data collection method, and cost
of data collection. For details of performing the trade-off analysis, see Balci
and Sargent, 1984.

4.1.3.23 Structural Testing

Structural testing (also called white-box testing) consists of six testing techniques: branch,
condition, data flow, loop, path, and statement testing. Structural (white-box) testing
evaluates the model based on its internal structure (how it is built), whereas functional
(black-box) testing assesses the input-output transformation accuracy of the model.
(Refer to Section 4.1.3.12.) Structural testing employs data flow and control flow
diagrams to assess the accuracy of internal model structure by examining model elements
such as statements, branches, conditions, loops, internal logic, internal data
representations, submodel interfaces, and model execution paths.

Branch testing runs the model or simulation under test data to execute as many branch
alternatives as possible, as many times as possible, and to substantiate their accurate

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-31

operation. The more branches that test successfully, the more confidence is gained in the
model’s accurate execution with respect to its logical branches (Beizer, 1990).

Condition testing runs the model or simulation under test data to execute as many
logical conditions as possible, as many times as possible, and to substantiate their
accurate operation. The more logical conditions that test successfully, the more
confidence is gained in the model’s accurate execution with respect to its logical
conditions.

Data flow testing uses the control flowgraph to explore sequences of events related to
the status of data structures and to examine data-flow anomalies. For example, sufficient
paths can be forced to execute under test data to ensure that every data element and
structure is initialized before use or every declared data structure is used at least once in
an executed path (Beizer, 1990).

Loop testing runs the model or simulation under test data to execute as many loop
structures as possible, as many times as possible, and to substantiate their accurate
operation. The more loop structures that test successfully, the more confidence is gained
in the model’s accurate execution with respect to its loop structures (Pressman, 1996).

Path testing runs the model or simulation under test data to execute as many control
flow paths as possible, as many times as possible, and to substantiate their accurate
operation. The more control flow paths that test successfully, the more confidence is
gained in the model’s accurate execution with respect to its control flow paths, but 100
percent path coverage is impossible to achieve for a reasonably large M&S application
(Beizer, 1990).

Path testing is performed in three steps (Howden, 1976). In Step 1, the model control
structure is determined and represented in a control flow diagram. In Step 2, test data is
generated to cause selected model logical paths to be executed. Symbolic evaluation
(Section 4.1.2.8) can be used to identify and classify input data based on the symbolic
representation of the model. The test data is generated in such a way as to (a) cover all
statements in the path, (b) encounter all nodes in the path, (c) cover all branches from a
node in the path, (d) achieve all decision combinations at each branch point in the path,
and (e) traverse all paths (Prather and Myers, 1987). In Step 3, by using the generated
test data, the model is forced to proceed through each path in its execution structure,
thereby providing comprehensive testing.

In practice, only a subset of all possible model paths is selected for testing due to
budgetary constraints. Recent work has sought to increase the amount of coverage per

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-32

test case or to improve the effectiveness of the testing by selecting the most critical areas
to test. (Savvy readers may note that this technique is similar to the larger concept of
VV&A tailoring that was addressed in Chapters 1 and 3.) The path prefix strategy is an
adaptive strategy that uses previously tested paths as a guide in the selection of
subsequent test paths. Prather and Myers (1987) prove that the path prefix strategy
achieves total branch coverage.

The identification of essential paths is a strategy that reduces the path coverage required
by nearly 40 percent (Chusho, 1987) by eliminating nonessential paths. Paths overlapped
by other paths are nonessential. The model control flow graph is transformed into a
directed graph whose arcs (called primitive arcs) correspond to the essential paths of the
model. Nonessential arcs are called inheritor arcs because they inherit information from
the primitive arcs. The graph produced during the transformation is called an inheritor-
reduced graph. Chusho (1987) presents algorithms for efficiently identifying nonessential
paths, reducing the control graph into an inheritor-reduced graph, and applying the
concept of essential paths to the selection of effective test data.

Statement testing runs the model or simulation under test data to execute as many
statements as possible, as many times as possible, and to substantiate their accurate
operation. The more statements that test successfully, the more confidence is gained in
the model’s accurate execution with respect to its statements (Beizer, 1990).

4.1.3.24 Submodel/Module Testing

Submodel testing requires a top-down decomposition of the model into submodels. The
executable model is instrumented to collect data on all input and output variables of a
submodel. The system is instrumented (if possible) to collect similar data. Then, the
behavior of each submodel is compared with the corresponding subsystem’s behavior to
judge the submodel’s validity. If a subsystem can be modeled analytically, its exact
solution can be compared against the simulation solution to assess its validity
quantitatively.

As enumerated in Principle 6 in Chapter 2, validating each submodel individually does not
imply sufficient validity for the whole model. Each submodel is found sufficiently valid
with some allowable error. The allowable errors can accumulate to make the whole model
invalid. Therefore, after each submodel is validated, the whole model itself must be tested.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-33

4.1.3.25 Symbolic Debugging

This technique employs a debugging tool that allows the modeler to manipulate model
execution while viewing the model at the source code level. By setting breakpoints, the
modeler can interact with the entire model one step at a time, at predetermined locations,
or under specified conditions. While using a symbolic debugger, the modeler may alter
model data values or replay a portion of the model, i.e., execute it again under the same
conditions. Typically, the modeler utilizes the information gathered with execution testing
techniques (see Section 4.1.3.9) to isolate a problem or its proximity. Then the debugger
is employed to determine how and why the error occurs.

Current state-of-the-art debuggers can view the runtime code as it appears in the source
listing, set watch variables to monitor data flow, examine complex data structures, and
even communicate with asynchronous input/output channels. The use of symbolic
debugging can reduce greatly the debugging effort while increasing its effectiveness.
Symbolic debugging allows the modeler to locate errors and check numerous
circumstances that lead to errors (Whitner and Balci, 1989).

4.1.3.26 Top-Down Testing

Top-down testing is used with top-down model development. In top-down development,
model construction starts with the submodels at the highest level and culminates with the
routines at the base level, i.e., the ones that cannot be decomposed further. As each
submodel is completed, it is tested thoroughly. When submodels with the same parent
have been developed and tested, the submodels are integrated and their integration is
tested. This process is repeated until the whole model has been integrated and tested. The
integration of completed submodels need not wait for all submodels at the same level to
be completed. Submodel integration and testing can be, and often is, performed
incrementally (Sommerville, 1996).

Top-down testing begins with a test of the global model at its highest level. When testing
a given level, calls to submodels at lower levels are simulated using stubs. A stub is a
dummy submodel that has no function other than to let its caller complete the call. Fairley
(1976) lists the following advantages of top-down testing: (a) model integration testing is
minimized; (b) a working model is produced earlier in the development process; (c) higher
level interfaces are tested first; (d) a natural environment for testing lower levels is
created; and (e) errors are localized to new submodels and interfaces.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-34

Some of the disadvantages of top-down testing are (a) thorough submodel testing is
discouraged, because the entire model must be executed to perform testing; (b) testing can
be expensive, because the whole model must be executed for each test; (c) adequate input
data is difficult to obtain because of the complexity of the data paths and control
predicates; and (d) integration testing is hampered because of the size and complexity of
testing the whole model (Fairley, 1976).

4.1.3.27 Visualization/Animation

Visualization and animation of a simulation greatly assist in model V&V (Sargent, 1992).
Displaying graphical images of internal (e.g., how customers are served by a cashier) and
external (e.g., utilization of the cashier) dynamic behavior of a model during execution
exhibits errors. For example, in visual simulation of a traffic intersection, the modeler can
observe the arrival of vehicles in different lanes and their movements through the
intersection as the traffic light changes. Visualizing the model as it executes and comparing
it with the real traffic intersection can help identify discrepancies between the model and
the system.

Seeing the model in action is very useful for uncovering errors; however, it does not
guarantee model correctness (Paul, 1989). Therefore, visualization should be used with
caution.

4.1.4 Formal V&V Techniques

Formal V&V techniques are based on formal mathematical proofs of correctness. If
attainable, a formal proof of correctness is the most effective means of model V&V.
Unfortunately, if attainable is the sticking point. Current formal proof of correctness
techniques cannot be applied to even a reasonably complex M&S application; however,
formal techniques serve as the foundation for other V&V techniques. The most commonly
known eight techniques are briefly described below: (a) induction, (b) inference, (b) logical
deduction, (d) inductive assertions, (e) lambda-calculus, (f) predicate calculus, (g)
predicate transformation, and (h) proof of correctness (Khanna, 1991; Whitner and Balci,
1989).

Induction, inference, and logical deduction are simply acts of justifying conclusions
on the basis of premises given. An argument is valid if the steps used to progress from the
premises to the conclusion conform to established rules of inference. Inductive reasoning
is based on invariant properties of a set of observations; assertions are invariants because

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-35

their value is defined to be true. Given that the initial model assertion is correct, it stands
to reason that if each path progressing from that assertion is correct and each path
subsequently progressing from the previous assertion is correct, then the model must be
correct if it terminates. Birta and Ozmizrak (1996) present a knowledge-based approach
for M&S validation that uses a validation knowledge base containing rules of inference.

Inductive assertions assess model correctness based on an approach that is very close to
formal proof of model correctness. It is conducted in three steps. In Step 1, input-to-
output relations for all model variables are identified. In Step 2, these relations are
converted into assertion statements and are placed along the model execution paths so
that an assertion statement lies at the beginning and end of each model execution path. In
Step 3, verification is achieved by proving for each path that, if the assertion at the
beginning of the path is true and all statements along the path are executed, then the
assertion at the end of the path is true. If all paths plus model termination can be proved,
by induction, the model is proved to be correct (Manna et al., 1973; Reynolds and Yeh,
1976).

Lambda Calculus (Barendregt, 1981) is a system that transforms the model into formal
expressions by rewriting strings. The model itself can be considered a large string. Lambda
calculus specifies rules for rewriting strings to transform the model into lambda calculus
expressions. Using lambda calculus, the modeler can express the model formally to apply
mathematical proof of correctness techniques to it.

Predicate calculus provides rules for manipulating predicates. A predicate is a
combination of simple relations, such as completed_jobs >steady_state_length. A
predicate will be either true or false. The model can be defined in terms of predicates and
manipulated using the rules of predicate calculus. Predicate calculus forms the basis of all
formal specification languages (Backhouse, 1986).

Predicate transformation (Dijkstra, 1975; Yeh, 1977) verifies model correctness by
formally defining the semantics of the model with a mapping that transforms model
output states to all possible model input states. This representation is the basis from
which model correctness is proved.

Formal proof of correctness expresses the model in a precise notation and then
mathematically proves that the executed model terminates and satisfies the requirements
with sufficient accuracy (Backhouse, 1986; Schach, 1996). Attaining proof of correctness
in a realistic sense is not possible under the current state of the art. The advantage of
realizing proof of correctness is so great, however, that, when the capability is realized, it
will revolutionize V&V.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-36

4.2 Guidelines for Using the V&V Techniques

t is very important to understand the twelve principles of VV&A presented in
Chapter 2 when applying the techniques just described to the VV&A process
presented in Chapter 3. The principles help researchers, practitioners, and managers

better understand M&S VV&A. They provide the underpinnings for the V&V techniques.
Understanding and applying the principles is crucially important for the success of an
M&S application.

Recall that, as stated in Principle 2 of Chapter 2, V&V is not a phase or step in the M&S
life cycle but a continuous activity throughout the entire M&S life cycle. Table 4-2
shows the techniques that apply to the major stages of the generic VV&A process:

• Problem Definition • M&S Approach

• M&S Requirements • Conceptual Model

• M&S Design • M&S Implementation

• M&S Application • M&S Acceptability Assessment

The rows of Table 4-2 list the 76 V&V techniques described in this chapter, including a
placeholder for the 18 statistical techniques shown in Table 4-1. These statistical
techniques can be used to perform model validation quantitatively if data can be collected
on the input and output processes of the system.

I

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-37

Table 4-2. Applicability of the V&V Techniques Throughout the M&S Life
Cycle

Formul.
Problem

M&S
Approach

M&S
Reqs.

Concep.
Model

M&S
Design

M&S
Implem.

M&S
Applic.

M&S
Accept.
Assess.

Acceptance Testing

Alpha Testing

Assertion Checking

Audit

Authorization Testing

Beta Testing

Bottom-Up Testing

Boundary Value Testing

Branch Testing

Calling Structure
Analysis
Cause-Effect Graphing

Comparison Testing

Concurrent Process
Analysis
Condition Testing

Control Flow Analysis

Data Dependency
Analysis
Data Flow Analysis

Data Flow Testing

Data Interface Testing

Debugging

Desk Checking

Equivalence Partitioning
Testing
Execution Monitoring

Execution Profiling

Execution Tracing

Extreme Input Testing

Face Validation

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-38

Table 4-2. Applicability of the V&V Techniques Throughout the M&S Life
Cycle (cont.)

Formul.
Problem

M&S
Approach

M&S
Reqs.

Concep.
Model

M&S
Design

M&S
Implem.

M&S
Applic.

M&S
Accept.
Assess.

Fault/Failure Analysis

Fault/Failure Insertion Testing

Field Testing

Functional Testing

Graphical Comparisons

Induction

Inductive Assertions

Inference

Inspections

Invalid Input Testing

Lambda Calculus

Logical Deduction

Loop Testing

Model Interface Analysis

Model Interface Testing

Object-Flow Testing

Partition Testing

Path Testing

Performance Testing

Predicate Calculus

Predicate Transformation

Predictive Validation

Product Testing

Proof of Correctness

Real-Time Input Testing

Regression Testing

Reviews

Security Testing

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-39

Table 4-2. Applicability of the V&V Techniques Throughout the M&S Life
Cycle (cont.)

Formul.
Problem

M&S
Approac

h

M&S
Reqs.

Concep.
Model

M&S
Design

M&S
Implem.

M&S
Applic.

M&S
Accept.
Assess.

Self-Driven Input Testing

Semantic Analysis

Sensitivity Analysis

Standards Testing

State Transition Analysis

Statement Testing

Statistical Techniques
(Table 4-1)
Stress Testing

Structural Analysis

Submodel/Module Testing

Symbolic Debugging

Symbolic Evaluation

Syntax Analysis

Top-Down Testing

Trace-Driven Input Testing

Traceability Assessment

Turing Test

User Interface Analysis

User Interface Testing

Visualization/Animation

Walkthroughs

Table 4-2 can be used to determine the V&V techniques that apply to each major stage of
the M&S life cycle. From those applicable, the technique(s) for a particular V&V activity
can be selected by considering the following: the model type as described in Figure 3-1;
the problem to be solved through the use of M&S; the specific objectives of the M&S
application; and the constraints of the application, including time, cost, and schedule.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-40

The life cycle application of V&V is extremely important for successful completion of
complex and large-scale M&S applications. How much to test or when to stop testing
depends on the M&S application objectives. The V&V effort should continue until the
modeler obtains sufficient confidence in the credibility and acceptability of the model or
simulation results. Sufficient confidence is determined by the objectives of the M&S
application.

Yet, it is recognized that applying V&V techniques throughout the life cycle is time-
consuming and can be costly if not properly tailored to the relevant requirements of the
problem. In practice, under pressure to complete an M&S application within a given
timeframe, VV&A is usually sacrificed first. The sacrifice of VV&A means less than the
delivery of a model without proven credibility and therefore without value to the decision
maker. Remember the bottom line from Principle 2: Correction of errors early in
development always costs less than correction of errors later. If you are worried about the
cost of VV&A, it is better to spend a little up front than a lot later. During a meeting in
the General’s office or standing before a senior-level review board is not the time to
realize that the sacrifice of VV&A was a mistake.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-41

References

Ackerman, A.F., Fowler, P.J., & Ebenau, R.G. (1983). Software inspections and the
industrial production of software. In Hans-Ludwig Hausen (Ed.), Software
validation: Inspection, testing, verification, alternatives. Proceedings of the
Symposium on Software Validation (pp. 13–40). Darmstadt, FRG.

Adrion, W.R., Branstad, M.A., & Cherniavsky, J.C. (1982). Validation, verification, and
testing of computer software. Computing Surveys, 14 (2), 159–192.

Aigner, D.J. (1972). A note on verification of computer simulation models. Management
Science, 18 (11), 615–619.

Allen, F.E. & Cocke, J. (1976). A program data flow analysis procedure. Communications
of the ACM, 19 (3), 137–147.

Backhouse, R.C. (1986). Program construction and verification. London: Prentice-Hall
International (UK) Ltd.

Balci, O. (1988). The implementation of four conceptual frameworks for simulation
modeling in high-level languages. In M.A. Abrams, P.L. Haigh, & J.C. Comfort
(Eds.), Proceedings of the 1988 Winter Simulation Conference (pp. 287–295).
Piscataway, NJ: IEEE.

Balci, O., Bertelrud, A.I., Esterbrook, C.M., & Nance, R.E. (1995). A picture-based
object-oriented visual simulation environment. In C. Alexopoulos, K. Kang, W.R.
Lilegdon, & D. Goldsman (Eds.), Proceedings of the 1995 Winter Simulation
Conference (pp. 1333–1340). Piscataway, NJ: IEEE.

Balci, O. & Sargent, R.G. (1981). A methodology for cost-risk analysis in the statistical
validation of simulation models. Communications of the ACM, 24 (4), 190–197.

Balci, O. & Sargent, R.G. (1982a). Some examples of simulation model validation using
hypothesis testing. In H.J. Highland, Y.W. Chao, & O.S. Madrigal (Eds.),
Proceedings of the 1982 Winter Simulation Conference (pp. 620–620).
Piscataway, NJ: North-Holland IEEE.

Balci, O. & Sargent, R.G. (1982b). Validation of multivariate response models using

Hotelling's two-sample T2 test. Simulation, 39 (6), 185–192.
Balci, O. & Sargent, R.G. (1983). Validation of multivariate response trace-driven

simulation models. In A.K. Agrawala & S.K. Tripathi (Eds.), Performance '83
(pp. 309–323). North-Holland, Amsterdam.

Balci, O. & Sargent, R.G. (1984). Validation of simulation models via simultaneous
confidence intervals. American Journal of Mathematical and Management
Sciences, 4 (3&4), 375–406.

Banks, J., Carson, J.S., & Nelson, B.L. (1996). Discrete-event system simulation (2nd ed.).
Englewood Cliffs, NJ: Prentice-Hall.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-42

Barendregt, H.P. (1981). The lambda calculus: Its syntax and semantics. New York:
North-Holland.

Beizer, B. (1990). Software testing techniques (2nd ed.). New York: Van Nostrand
Reinhold.

Birta, L.G. & Ozmizrak, F.N. (1996). A knowledge-based approach for the validation of
simulation models: The foundation. ACM Transactions on Modeling and
Computer Simulation (in press).

Chusho, T. (1987). Test data selection and quality estimation based on the concept of
essential branches for path testing. IEEE Transactions on Software Engineering,
SE-13 (5), 509–517.

Cohen, K.J. & Cyert, R.M. (1961). Computer models in dynamic economics. Quarterly
Journal of Economics, 75 (1), 112–127.

Damborg, M.J. & Fuller, L.F. (1976). Model validation using time and frequency domain
error measures (ERDA Report No. 76-152). Springfield, VA: NTIS.

Deutsch, M.S. (1982). Software verification and validation: Realistic project approaches.
Englewood Cliffs, NJ: Prentice-Hall.

Dillon, L.K. (1990). Using symbolic execution for verification of Ada tasking programs.
ACM Transactions on Programming Languages and Systems, 12 (4), 643–669.

Dobbins, J.H. (1987). Inspections as an up-front quality technique. In G.G. Schulmeyer
& J.I. McManus (Eds.), Handbook of software quality assurance (pp. 137–177).
New York: Van Nostrand-Reinhold Company.

Dunn, R.H. (1984). Software defect removal, New York: McGraw-Hill.
Dunn, R.H. (1987). The quest for software reliability. In G.G. Schulmeyer & J.I.

McManus (Eds.), Handbook of software quality assurance (pp. 342–384). New
York: Van Nostrand-Reinhold Company.

Emshoff, J.R. & Sisson, R.L. (1970). Design and use of computer simulation models.
New York: MacMillan.

Fairley, R.E. (1975). An experimental program-testing facility. IEEE Transactions on
Software Engineering, SE-1 (4), 350–357.

Fairley, R.E. (1976, July). Dynamic testing of simulation software. In Proceedings of the
1976 Summer Computer Simulation Conference (pp. 708–710). La Jolla, CA:
Simulation Councils.

Fishman, G.S. &. Kiviat, P.J. (1967). The analysis of simulation generated time series.
Management Science, 13 (7), 525–557.

Forrester, J.W. (1961). Industrial dynamics. Cambridge, MA: MIT Press.
Fujimoto, R.M. (1990). Parallel discrete event simulation. Communications of the ACM,

33 (10), 31–53.
Fujimoto, R.M. (1993). Parallel discrete event simulation: Will the field survive? ORSA

Journal on Computing, 5 (3), 213–230.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-43

Gafarian, A.V. & Walsh, J.E. (1969). Statistical approach for validating simulation models
by comparison with operational systems. In Proceedings of the 4th International
Conference on Operations Research (pp. 702–705). New York: John Wiley &
Sons.

Gallant, A.R., Gerig, T.M., & Evans, J.W. (1974). Time series realizations obtained
according to an experimental design. Journal of the American Statistical
Association, 69 (347), 639–645.

Garratt, M. (1974, July). Statistical validation of simulation models. In Proceedings of the
1974 Summer Computer Simulation Conference (pp. 915–926). La Jolla, CA:
Simulation Councils.

Hermann, C.F. (1967). Validation problems in games and simulations with special
reference to models of international politics. Behavioral Science, 12 (3), 216–231.

Hollocker, C.P. (1987). The standardization of software reviews and audits. In G.G.
Schulmeyer & J.I. McManus (Eds.), Handbook of software quality assurance (pp.
211–266). New York: Van Nostrand-Reinhold Company.

Howden, W.E. (1976). Reliability of the path analysis testing strategy. IEEE
Transactions on Software Engineering, SE-2 (3), 208–214.

Howden, W.E. (1980). Functional program testing. IEEE Transactions on Software
Engineering, SE-6 (2), 162–169.

Howrey, P. & Kelejian, H.H. (1969). Simulation versus analytical solutions. In T.H.
Naylor (Ed.), The design of computer simulation experiments (pp. 207–231).
Durham, NC: Duke University Press.

Hunt, A.W. (1970). Statistical evaluation and verification of digital simulation models
through spectral analysis. Unpublished doctoral dissertation, University of Texas
at Austin.

Khanna, S. (1991). Logic programming for software verification and testing. The
Computer Journal, 34 (4), 350–357.

Kheir, N.A. & Holmes, W.M. (1978). On validating simulation models of missile
systems. Simulation, 30 (4), 117–128.

King, J.C. (1976). Symbolic execution and program testing. Communications of the ACM,
19 (7), 385–394.

Kleijnen, J.P.C. (1975). Statistical techniques in simulation (Vol. 2). New York: Marcel
Dekker.

Knight, J.C. & Myers, E.A. (1993). An improved inspection technique. Communications
of the ACM, 36 (11), 51–61.

Law, A.M. & Kelton, W.D. (1991). Simulation modeling and analysis (2nd ed.). New
York: McGraw-Hill.

Manna, Z., Ness, S., & Vuillemin, J. (1973). Inductive methods for proving properties of
programs. Communications of the ACM, 16 (8), 491–502.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-44

Miller, D.K. (1975). Validation of computer simulations in the social sciences. In
Proceedings of the Sixth Annual Conference on Modeling and Simulation (pp.
743–746). Pittsburg, PA.

Miller, D.R. (1974a, July). Model validation through sensitivity analysis. In Proceedings
of the 1974 Summer Computer Simulation Conference (pp. 911–914). La Jolla,
CA: Simulation Councils.

Miller, D.R. (1974b). Sensitivity analysis and validation of simulation models. Journal of
Theoretical Biology, 48 (2), 345–360.

Miller, L.A., Groundwater, E.H., Hayes, J.E., & Mirsky, S.M. (1995). Survey and
assessment of conventional software verification and validation methods (Special
Publication NUREG/CR-6316, Vol. 2). Washington, DC: U.S. Nuclear Regulatory
Commission.

Myers, G.J. (1978). A controlled experiment in program testing and code
walkthroughs/inspections. Communications of the ACM, 21 (9), 760–768.

Myers, G.J. (1979). The art of software testing. New York: John Wiley & Sons.
Naylor, T.H. & Finger, J.M. (1967). Verification of computer simulation models.

Management Science, 14 (2), B92–B101.
Ould, M.A. & Unwin, C. (1986). Testing in software development. Great Britain:

Cambridge University Press.
Page, E.H. & Nance, R.E. (1994, July). Parallel discrete event simulation: A modeling

methodological perspective. In D.K. Arvind, R. Bagrodia, & J.Y-B. Lin (Eds.),
Proceedings of the Eighth Workshop in Parallel and Distributed Simulation
(PADS ‘94) (pp. 88–93). Los Alamitos, CA: IEEE Computer Society Press.

Paul, R.J. (1989). Visual simulation: Seeing is believing? In R. Sharda, B.L. Golden, E.
Wasil, O. Balci, & W. Stewart (Eds.), Impacts of recent computer advances on
operations research (pp. 422–432). New York: Elsevier.

Perry, W. (1995). Effective methods for software testing. New York: John Wiley & Sons.
Prather, R.E. & Myers, J.P., Jr. (1987). The path prefix software testing strategy. IEEE

Transactions on Software Engineering, SE-13 (7), 761–766.
Pressman, R.S. (1996). Software engineering: A practitioner’s approach (4th Ed.). New

York: McGraw-Hill.
Ramamoorthy, C.V., Ho, S.F., & Chen, W.T. (1976). On the automated generation of

program test data. IEEE Transactions on Software Engineering, SE-2 (4), 293–
300.

Rattray, C. (Ed.). (1990). Specification and verification of concurrent systems. New York:
Springer-Verlag.

Reynolds, C. & Yeh, R.T. (1976). Induction as the basis for program verification. IEEE
Transactions on Software Engineering, SE-2 (4), 244–252.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-45

Richardson, D.J. & Clarke, L.A. (1985). Partition analysis: A method combining testing
and verification. IEEE Transactions on Software Engineering, SE-11 (12), 1477–
1490.

Rowland, J.R. & Holmes, W.M. (1978) Simulation validation with sparse random data.
Computers and Electrical Engineering, 5 (3), 37–49.

Sargent, R.G. (1992). Validation and verification of simulation models. In J.J. Swain, D.
Goldsman, R.C. Crain, & J.R. Wilson (Eds.), Proceedings of the 1992 Winter
Simulation Conference (pp. 104–114). Piscataway, NJ: IEEE.

Schach, S.R. (1996). Software engineering (3rd ed.). Homewood, IL: Irwin.
Schruben, L.W. (1980). Establishing the credibility of simulations. Simulation, 34 (3),

101–105.
Shannon, R.E. (1975). Systems simulation: The art and science. Englewood Cliffs, NJ:

Prentice-Hall.
Sommerville, I. (1996). Software engineering (5th ed.). Reading, MA: Addison-Wesley.
Teorey, T.J. (1975). Validation criteria for computer system simulations. Simuletter, 6

(4), 9–20.
Theil, H. (1961). Economic forecasts and policy. Amsterdam, The Netherlands: North-

Holland.
Turing, A.M. (1963). Computing machinery and intelligence. In E.A. Feigenbaum & J.

Feldman (Eds.), Computers and thought (pp. 11–15). New York: McGraw-Hill.
Tytula, T.P. (1978, June). A method for validating missile system simulation models

(Technical Report E-78-11). Redstone Arsenal, AL: U.S. Army Missile R&D
Command.

Van Horn, R.L. (1971). Validation of simulation results. Management Science, 17 (5),
247–258.

Watts, D. (1969). Time series analysis. In T.H. Taylor (Ed.), The design of computer
simulation experiments (pp. 165–179). Durham, NC: Duke University Press.

Whitner, R.B. & Balci, O. (1989). Guidelines for selecting and using simulation model
verification techniques. In E.A. MacNair, K.J. Musselman, & P. Heidelberger
(Eds.), Proceedings of the 1989 Winter Simulation Conference (pp. 559–568).
Piscataway, NJ: IEEE.

Wright, R.D. (1972). Validating dynamic models: An evaluation of tests of predictive
power. In Proceedings of the 1972 Summer Computer Simulation Conference (pp.
1286–1296). La Jolla, CA: Simulation Councils.

Yourdon, E. (1985). Structured walkthroughs (3rd ed.). New York: Yourdon Press.
Yucesan, E. & Jacobson, S.H. (1992). Building correct simulation models is difficult. In

J.J. Swain, D. Goldsman, R.C. Crain, & J.R. Wilson (Eds.), Proceedings of the
1992 Winter Simulation Conference (pp. 783–790). Piscataway, NJ: IEEE.

VV&A Recommended Practices Guide

Defense Modeling and Simulation Office, U.S. Department of Defense—November 1996

4-46

Yucesan, E. & Jacobson, S.H. (1996). Intractable structural issues in discrete event
simulation: Special cases and heuristic approaches. ACM Transactions on
Modeling and Computer Simulation (in press).

Additional Reading

Balci, O. (1986). Requirements for model development environments. Computers &
Operations Research, 13 (1), 53–67.

Balci, O. & Nance, R.E. (1987). Simulation model development environments: A research
prototype. Journal of Operational Research Society, 38 (8), 753–763.

Derrick, E.J. & Balci, O. (1995). A visual simulation support environment based on the
DOMINO conceptual framework. Journal of Systems and Software, 31 (3), 215–
237.

Dijkstra, E.W. (1975). Guarded commands, non-determinacy and a calculus for the
derivation of programs. Communications of the ACM, 18 (8), 453–457.

Moose, R.L. & Nance, R.E. (1989). The design and development of an analyzer for
discrete event model specifications. In R. Sharda, B.L. Golden, E. Wasil, O. Balci,
& W. Stewart (Eds.), Impacts of recent computer advances on operations research
(pp. 407–421). New York: Elsevier.

Nance, R.E. & Overstreet, C.M. (1987). Diagnostic assistance using digraph
representations of discrete event simulation model specifications. Transactions of
the SCS, 4 (1), 33–57.

Overstreet, C.M. & Nance, R.E. (1985). A specification language to assist in analysis of
discrete event simulation models. Communications of the ACM, 28 (2), 190–201.

Stucki, L.G. (1977). New directions in automated tools for improving software quality. In
R. Yeh (Ed.), Current trends in programming methodology, Vol. 2 (pp. 80–111).
Englewood Cliffs, NJ: Prentice-Hall.

Yeh, R.T. (1977). Verification of programs by predicate transformation. In Current
Trends in Programming Methodology, Vol. 2 (pp. 228–247). Englewood Cliffs,
NJ: Prentice-Hall.

